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ABSTRACT

The mechanical properties from the uniaxial compression tests
conducted in Phase I of the Mechanical Properties of Sea Ice program are
summarized. The tegts were Sonducted at temperatures of -5°C amd -20°C and at
strain rates of 10 and 107°/sec. The effects of temperature and strain rate
on each mechanical property are investigated. Each stress-strain curve 1is
presented and an energy based parameter is derived to characterize the
mechanical response of each curve. The effects of temperature and strain-rate
on this parameter are also investigated. The physical properties of each test
sample are listed, and their effect on the mechanical properties is briefly
discussed.

KEY WORDS: ice mechanics, ridge, ice formed feature, mechanical property,
statistical analysis, compressive strength, strain, linear,
regression analysis, prediction, testing, stress, load (force),
energy, temperature
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TECHNICAL PROGRESS REPORT BRC 45-85
THE UNIAXIAL MECHANICAL RESPONSE OF-MULTI-YEAR RIDGE IGE
BY

J. F. DORRIS AND J. S. AUSTIN

INTRODUCTION

The Mechanical Properties of Sea Ice (MPSI) is a project, consisting
of several phases, to determine the mechanical propertieé of multi-year sea
ice. The project was developed and administered by Shell Development Company.
Participants sponsoring Phase I of the project (MPSI-1) included Amoco Pro-
duction Company, Arco Oil and Gas Company, Chevron Oil Field Research Company,
Exxon Production Research Company, Gulf Research and Development Company,
Minerals Management Service of the Department of Interior, Mitsui Engineering
and Shipbuilding Company, Sohio Petroleum Company, and Texaco Incorporated.
The field program to collect ice samples and the experimentél program for ice
testing were conducted by the U.S. Army Cold Regions Research and Engineering
Laboratory (CRREL) at Hanover, New Hampshire.

The experimental program in MPSI-1 was designed to accomplish three
goals:

l. Measure the mechanical (i.e., 1-D compressive) properties of multi-
year ridge ice,

2. Determine whether there is any significant variation in the
mechanical properties within and between ridges, and

3. Develop the test techniques to be used in subsequent phases of the
program.

The results presented here summarize the approximately 200 uniaxial
compression tests conducted in MPSI-1. These tests have already been )

1

documented by Cox et al.” in a CRREL report and several excerpts have been

presented as technical papers by individual CRREL aut:hors.z“4 The CRREL

report1 describes the field program and experimental program in detail and

presents the mechanical and physical properties of each test sample. The
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purpose of this report is to present an analysis of the digitized test data
which complements and expands upon CRREL's analyses by utilizing the entire
stress—strain history of each test.

The ice samples tested were extracted with a 4 1/4 in. diameter core
barrel in the spring of 1981 from ten multi-year pressure ridges located in
the Beaufort Sea, northwest of Reindeer Island. The ice samples were trans-
ported to the CRREL laboratories and prepared for testing. Sample preparation
included cutting each sample to length, machining the samples to test geo-
metry, and fitting the ends with synthane endcaps. The samples were then
tested under uniaxial test conditions. Mellor et a]..S describe the details of
sample preparation and testing techniques.

The mechanical properties were measured by Cox et al.l at two
temperatures (i.e., =5°C, =20°C) and two strain rates (i.e., lo-s/sec,
10-3/sec). These temperatures and strain rates were chosen to bracket the
temperature and strain rate regimes of most interest to the engineer. To
characterize the ice, physical properties (e.g., brine volume, porosity, etc.)
of each sample were measured. To better define the physical properties of
each ice sample, Cox and Weeks6 developed a method of calculating the air
volume of the sample. This method permits the total porosity to be calculated
by knowing both the air volume and brine volume. A statistical summary of the
mechanical properties shows large scatter which is attributed to the wide
variation of ice types found in multi-year ridges. Richter and Cox> developed
a classification scheme for multi-year ridge ice which offers a means of
reducing the scatter by grouping tests according to ice structure. This
classification scheme was applied to approximately 35 test samples in Phase I,
and a forthcoming report by Richter—Menge and Cox will contain additional
crystallographic analyses of MPSI-1 test samples.

Weeks4 investigates the statistical variation of strength within and
between ridges. Based on these statistics, he concludes that there is no
significant variation between cores at the same site (i.e., within the same
ridge) nor is there any significant differences between ridges. However,
Weeks qualifies his conclusions by pointing out that the ridges used in this
study represent old, well-healed ridges whose—stréngth characteristics are
probably quite different than younger, less consolidated ridges.

Subsequent phases of the program will emphasize other types of tests

to give a complete picture of the mechanical response of multi-year ridge
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ice. To this end, test techniques were developed for uniaxial tension, con-
stant load compression, and conventional triaxial tests. The conventional

triaxial tests are conducted by applying the confining pressure in proportion
to the axial stress. These test techniques are discussed by Mellor et al.?

The goal here is to describe the mechanical (i.e., uniaxial compres-
sion) response as a whole by looking at the stress-strain curves. We begin by
listing the mechanical properties and describing the effects of temperature
and strain rate on those properties. The mechanical properties are then
integrated in such a way as to yield a quantity which characterizes a particu-
lar stress~strain curve. The variation in the mechanical response at each
rest condition will be illustrated, and the ability to characterize each
stress-strain curve will permit a discussion of changes in mechanical response
with changes in temperature and strain rate.

The stress—strain curves presented here were produced by digitizing
the analog records of each test and fitting splines to the digitized data. To
make the splines suitable for future constitutive modeling, certain assump-
tions were made about the initial conditions of the force-time record which
yielded different values fof the mechanical properties than those reported by

Cox et al.l

These differences are small except in one case which will be
noted later. The assumptions made and procedures followed in processing the
data are described in Appendix A. The spline for each force-time history is
printed in Appendix B and each stress-strain curve is presented according to
test condition in Appendix C.

For completeness, the physical properties measured by Cox et al.l
will be listed here. Although the large variations in mechanical properties
and mechanical response of multi-year ridge ice are related to the physical
properties of each test sample, discussion will be limited because of the
limited amount of crystallographic data presently available. Attempts, how-
ever, will be made to establish bounds and identify trends for the dependence
between mechanical and physical properties. The pending’cfystallographie
analysis by Richter-Menge and Cox will permit a more detailed look into the

effects of physical properties.
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MECHANICAL PROPERTIES AND STATISTICAL SUMMARY

The uniaxial compression test samples in MPSI-1 were taken from ten
multi-year pressure ridges in the Beaufort Sea. At each ridge, two sites were
selected several meters apart. At a particular site, the samples were
extracted from two cores several centimeters apart. Each sample was labeled
with a Ridge ID, whose nomenclature identified the ridge, core (and site), and
depth of the sample. The designations Rl through R10 in the Ridge ID identify
the ridge and the letters A-D identify the core. The letters A, B designate
the cores at one site while the letters C, D designate the cores at the second
site. The depths in centimeters from the top of the ridge to the top and
bottom of the ice samples are denoted in the Ridge ID by the two numbers
separated by a slash. Thus a sample designated R1A-062/089 would indicate a
sample taken from Ridge 1, site 1, core A, and a depth of 62 centimeters to
the top and 89 centimeters to the bottom of the sample.

The uniaxial compression tests were conducted at two temperatures
(i.e., T = -5°C, T = =20°C) and two strain rates (i.e., € = 10—5/sec, £ =
10f3/se;). The four possible combinations of temperatures and strain rates
give four independent test conditions. For convenience in later discussions,
the test conditions are assigned labels which are listed in Table 1. 1In the
following data summaries, all tests are grouped according to test condi-
tions. Each test within a test condition group is identified by the Ridge ID
of the test sample.

Following the procedures discussed in Appendix A, stress-strain
curves were generated for each test from which the mechanical properties were
calculated. The particular mechanical properties considered in the analysis
of the stress—strain curves are described in Table 2. This list includes the
mechanical properties .commonly used by engineers to describe the mechanical
response of other materials as well as additional properties not usually
calculated. The additional properties include the energy dissipated at peak

11

strength, the total energy dissipated, "flow'" energy, and "crushing" energy.

The flow and crushing energy terms are obtained from a decomposition of the

total energy and will be defined in the next section. For completeness, the

7

failure modes defined by Dorris’ are included but will not be discussed here.

In Table 2, the most important quantities used to describe the
M’ M’ ET, R’ and IT' The
quantity, Ip, is the integral of the stress-strain curve and measures the

mechanical response of multi-year ridge ice are ¢




]
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Table 1

IDENTIFYING LABELS FOR EACH TEST CONDITION

T
, -50C -200C
€
1075/sec C55 C520
10-3/sec c35 c320 .
Table 2

DESCRIPTION OF MECHANICAL PROPERTIES

Mechanical )
Property Description Units
Iy Maximum Stress psi
€y Strain at Maximum Stress %
o Residual Stress (Stress at 4.5% Strain) psi
€p Strain at End of Test %
Ep Initial Tangent Modulgs psi x 10°
Eg Secant Modulus ES = psi x 10
. M
ch/cM Stress Ratio
FM Failure Mode c -—
Ip Energy to Maximum Stress IP = _ch(e)de (in-1b£)/in3
o
.045
It Energy to 4.5% Strain IT = f o(e)de (in-1bf)/in>
)
o -
I Flow Energy I, = 1/2{.09 - —\a (in-1b£)/in3
F F ET R
Is Crushing Energy (I, = Ip - ;F) (in-1bf)/in3

Energy Ratio
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material's ability to store or dissipate energy. The spatial distribution of
I+ in the stress-strain plane characterizes the maCerial's response as either

m? Sy Ep

and gp can approximate the spatial distribution of It by defining the initial

condition, peak value, and final value of the material response. In the

brittle or ductile. For multi-year ridge ice,: the quantities o

following, these five quantities will be referred to collectively as primary
properties.
In contrast to o

and ET’ the primary properties o, and IT are

M? M’ R
arbitrary since their value depends on the choice of strain at which they were
calculated. Each test was programmed to end at 5% strain, but the procedures
followed in processing the data resulted in tests with varying lengths
slightly less than 5% strain. In order to make meaningful comparisons between
the properties associated with the end of the test, 4.5% strain was arbi-
trarily chosen to be the strain at which 9 and IT are calculated.

The mechanial properties are tabulated for each test according to
the four test conditions in Tables 3-6. . Any test in these tables having
missing values indicates a test which did not reach 4.5% strain due to prema-
ture failure of the test sample. Ali available mechanical properties‘are used
in the following statistical summary of properties, but only those tests which
reached 4.5% strain will be used in describing the stress—strain response of
multi-year ridge ice.

A statistical summary of the mechanical properties for each test
condition is provided in Tables 7-10. The tables list the number of samples
for each property along with the standard descriptive statistics of each

sample population. A measure of kurtosis and skewness is included to give an

impression of the shape of each distribution of the mechanical properties.

COMPARISON WITH CRREL'S RESULTS

The mean values of selected properties from Tables 7-10 are norma-
1

lized by the corresponding mean values reported by Cox et al.” to provide a
comparison of data sets. The ratios of mean values are listed in Table ll and
show good agreement between the data sets except for the initial tangent
modulus at the low strain rate. |

The discrepancy in modulus values can be attributed to different
measuring techniques. The instrumentation of an ice sample provided two

methods of measuring the axial displacement. One method employed two DCDTs
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Table 11

COMPARISON OF MEAN VALUES

Test Conditions

C55 €520 Cc35 C320

Oy .929 .973 1.001 1.011

€y 1.053 1.039 1.100 1.100

cR/cM .980 .986 .933 1.071

< ET .687 775 .985 .948
= NOTE: Numbers indicate mean wvalues

reported here normalized by mean
values reported in (1).
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with a gage length of 5 1/2 inches mounted 180° apart on the ice; the other
method employed an extensometer with a full sample gage length of 10 inches.
Cox et al.l measured the initial tangent modulus by graphically measuring the
slope of the force-displacement curve where the displacement was taken as the
average output of the two DCDTs. This technique has an advantage since it
provides a measurement from transducers mounted directly on the ice. However,
due to the nonhomdgeneous deformation of the ice samples, the DCDTs were only
reliable to approximately 0.l1% strain. We were interested in studying the.
stress—~strain curve well beyond 0.1% strain. Since the extensometer was used
as the control for the test and its output was proportional to time, we chose
to calculate the initial tangent modulus by measuring the maximum slope of the
force-time curve. These measurements would then be consistent with the
stress—strain curve up to 5% strain. Despite the disagreement between the
mean modulus values, the discrepancy is within the scatter of the data so that

one data set should not be preferred over the other.

TEMPERATﬁRE AND STRAIN RATE EFFECTS
ON THE MECHANICAL PROPERTIES

The standard procedure for studying the effects of temperature and
strain rate on the mechanical properties would be to conduct an analysis of
the variance of each property over the four test conditions. Since the sample
populations are unequal for each test condition, this type of analysis would
be a lengthy and time consuming procedure that is beyond the scope of this
study. Instead, meaningful conclusions about the effects of temperature and
strain rate can be drawn by comparison of mean values of a particular property
for different pairs of test conditions. Four pairs of test conditions are
chosen for comparison. Two pairs represent the two levels of constant tem-
perature and two pairs represent the two levels of constant strain rate.

In most cases, it is obvious from the data and our experience how a
mechanical property will vary with temperature or strain rate. However, in
cases where experience offers no guidance or when the mean values of the two
samples are fairly close and the variances are large, it is-difficult to draw
a conclusion. In these cases, it is necessary to. have an objective method of
comparing the mean values. A statistic commonly used to compare mean values

is the t-statistic defined by,
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are the mean values of the two samples being compared and si 1s

depends on the variance

Here X and X
a b

. . = b . 2
the estimated variance of Xa - Xb. The quantity S4
and size of each sample. '

The t-statistic is used in the t-test to make inferences about the

relative values of the population means, By and p The first step in conduc-

b
ting a t-test consists of stating an alternative to the null hypothesis,

By, T Hye The alternative hypothesis is either M, < My My > Hps OF M % W .
Once the alternative hypothesis is stated, a confidence limit is chosen which
defines the critical region. If the t-statistic falls into the critical
region, then the null hypothesis is rejected and the alternative hypothesis is
accepted.

A t-test was conducted for each mechanical property for four pairs
of test conditions. Table 12 summarizes the t-tests for the two pairs of test
conditions with constant strain rate and Table 13 summarizes the t-tests for
the two pairs of constant temperature. For each t-test, the alternative
hypothesis was chosen by looking at the means and standard deviations of the
two quantities being compared. If the means are within the standard deviation
of each other, then My ® My is chosen as the alternative hypothesis. If the
mean of one quantity is not within the standard deviation of the mean of the
other quantity or vice-versa, then the appropriate inequality is chosen for
the alternative. It is obvious from the choice of the alternative hypothesis
whether a one or two tailed t-test is conducted. In every test, the null
hypothesis was tested at the 99% confidence level.

It should be emphasized that the t-tests are only used as an aid in
drawing conclusions about the effects of temperature and strain rate and
should not be held sacred. It is quite possible that some results from the
t-tests are contradictory and perhaps even offend our physical intuition. In
these cases, judgment should be exercised before accepting or rejecting the
t-test. The degree of confidence we have in the t-test dépends on how well
the fundamental assumptions of the t-test are satisfied. The most restrictive
of these is the assumption that the variances of the two samples being com-—
pared are equal. This assumption can be relaxed by using an approximate
t-statistic which assumes unequal variances. The statistical package used to

calculate the t-statistic in Tables 12 and 13 also calculates the approximate
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Table 12

PAIRWISE t-TESTS
STRAIN RATE CONSTANT; TEMPERATURE VARIES

Mechanical Alternative Critical Conclusion
Property Hypothesis _ Region t (99% cConfidence)
. Hes20 > Hess t > 2,37 3.26 Hesag > Mess

M

o320 ~ He3s t > 2.36 12.07 Me3z20 7 Mess
c Mgsgo < Mess 0t < 7237 -2.68 Kcs20 < Mess
M -

Rc320 7 Me3s t > 2.36 5.99 He320 7 Me3s
o Mespo T MHess 0 £ 7 2e38 3.98 Hes2o 7 Hess
R

Me320 7 Mess £ >2.39 4.37 He320 7 Mess
E Mgsao * Mgss el > 2.64 1.98 Mes20 = Mess
T N

Hc320 ¥ Mess le] > 2.63 1.41 Hc320 T Me3s
E “es20 7 Mess le] > 2.64 2.86 Mesa0 ¥ Mess
s

Me320 * Me3s le] > 2.63 1.46 Mo300 = He3s

Hes20 * Mess le| > 2.64  -1.20 beszo = Bess
9/ 9y

320 ¥ Meas |e] > 2.61  -1.56 He320 T He3s
I “es20 T Mess el > 2.64 +243 520 T Mess
P

He320 ~ Me3s t > 2.36 8.60 He320 7 Me3s
T

He320 7 Me3s £ > 2.39 10.24 Mc320 7 Me3s
1 Mes20 7 Hess £>2.38 4.04 ‘Hes20 7 Mess
F - N -

320 ~ Me3s t > 2.39 4.38 He320 7 He3s
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Table 12 Cont.

Mechanical Alternative Critical Conclusion

Property Hypothesis Region t © (99% Confidence)
I Mes20 * Mess le| > 2.64 1.61 iesp0 = Hoss
c
Hc320 > He3s t > 2.39 10.62 e300 > T
Ic/T “es20 * Hess [e] > 2.64 0.94 Mes20 T Hess
c/tr
¥c320 ¥ ¥e3s e] > 2.61 2.07 Hc320 T He3s




BRC 45-85

Table 13

26

PAIRWISE t-TESTS :
TEMPERATURE CONSTANT; STRAIN RATE VARIES

Mechanical Alternative Critical ‘Conclusion
Property Hypothesis Region t (99% Confidence)
_ Me3s 7 Mess £ > 2.36 17.51 He3s 7 Mess
M
Me3p0 7 Mgszo ¢ 2038 27.38 He320 ~ Mes2o0
. He3s < Mgss £t <=-2.36  -12.68 e3s < Hess
M
Mg320 < Mgspo & < T2.38 =6.04 c320 < Mes20
< < -2, -2. -
_ Mess < Mess €< =2.37 2.25 Me3s = Mess
R —
Meazo * Meszg el > 2.69 -301 He320 = Mes20
: Me3s > Mgss £ > 2.36 8.74 He3s ~ Hess
T
‘Hc3zo 7 Meszo 0 7 2e38 3.29. He320 7 Hes2o
o He3s ~ Mgss € >2.36 17.10 He3s 7 Hess
S
Me3z0 ~ Mespe ¢ T 2-38 8.31 Hc320 ~ Meszo
He3s < Hgss € <-2.37  -18.25 He3s < Mess
oR/cM
He320 < Meszo < T2e4l -12.02 He320 < Mes20
1 Hess * Hess el > 2.63  -2.09 He3s T Hess
p
“c3z0 ” Meszo B 2038 3.76 He320 7 Mes20
. He3s ~ Hgss £ > 2.37 6.72 Hg3s 7 Hess
T
£ > 2.41 9.87

He320 7 Mes20

He320 7 Mes20

)

B
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Table 13 Cont.

Mechanical Alternative Critical Conclusion
" Property Hypothesis Region t (99% Confidence)
: Me3s ¥ Mess el > 264 -2.13 He3s T Hess
F
Megz0 * Beszo (Bl > 2469 0.34 Me320 T Mes20
. He3s ~ Hess £ > 2.37 19.12 Me3s 7 Hess
c
Mo3pg > Meszo &7 2-41 2l.34 Me320 ~ Mes520
T e3s 7 Hess b > 2.37 12.93 Me3s 7 Hess
CF £ > 2.41 8.66

Me320 ~ Mes20

He320 ~ ¥es20
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t-statistic. Use of the approximate t-statistic to test the null hypothesis
does not change any of the conclusions in Tables 12 and 13.

Based primarily on our judgment and guided by the t-tests, the
effects of temperature and strain-rate on the primary mechanical properties
are summarized in Tables 14-18. The four test conditions are shown in matrix
form with the two levels of constant strain rate horizontal and the two levels
of constant temperature vertical. At each matrix location, the mean, standard
deviation, and sample size are recorded. Test conditions connected by a
dashed line indicate no change in the mechanical property between those two
conditions. Test conditions connected by a solid arrow indicate an increase
in the mechanical property in the direction of the arrow..

As expected, the maximum stress increases with decreasing tempera-
ture and increasing strain rate. The total dissipated energy follows the same
trends for temperature and strain rate. The initial tangent modulus increases
with increasing strain rate but is independent of temperature. The most
interesting result is that the residual stress shows no change with strain
rate, which suggests that the stress-strain curve is rate independent at large
strains. However, the residual stress does increase with decreasing tempera-
ture.

The results for strain at maximum stress show that at both tempera-
tures, e, increases with decreasing strain rate. However, Table 15 does not

M
indicate how g,, varies with temperature since the t=-tests show that ¢

M M
increases with increasing temperature at 10-5/sec and increases with decreas-
ing temperature at 10-3/sec. This case indicates a possible coupling between
the effects of temperature and strain rate which would render the pairwise
t-tests inappropriate. In this case, an analysis of variance would be more

suitable.

LINEAR REGRESSION MODELS BASED ON TOTAL DISSIPATED ENERGY

Correlations between any two mechanical properties can be inves-
tigated by creating ordered pairs of the two properties fér each test and
plotting the resulting points in the plane. Rather than producing plots for
each test cdndition, plots are produced for each of the two levels of constant
temperature to illustrate the effect of strain rate.

The most important mechanical property in terms of ice load calcula-

tions is the maximum stress. We seek correlations for this quantity by
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Table 14

SUMMARY OF MEAN VALUES FOR Oy (PSI)

T -50C -20°C
316+£122 393+103
10‘5/sec >
) 87 37
_ 69 4 I 41
10'3/sec >
879+234 1410+£202
Table 15
SUMMARY OF MEAN VALUE FOR €y (%)
T
-50C -20°C
é
.400x.161 .322+.100
10'5/sec
67 T T 37
69 41
10‘3/sec
.143+.080 ,209+.064
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Table 16

SUMMARY OF MEAN VALUE FOR o (PSI)

T
-50C -200C
é
5 200:44 249+72
1079/sec r >
61 I 29
{ I
i A
42 | ! 18
10"3/sec »>!
17757 255176
Table 17

SUMMARY OF MEAN VALUE FOR E;, (PSI x 109)

T .
-50C -200C
.509+.356 £90£.576
10'5/sec ________
67 37
69 41
1073 /sec | AP \
1.010+£.312 1.135£.614
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Table 18

SUMMARY OF MEAN VALUE FOR I (in-1bf)/ in3

T
-50C -200C
€
10.19%2.50 12.70+3.21
10‘5/sec >
61 .28
42 18
10’3/sec \ >
13.74+2.82 22.35+£3.35

Table 19

LINEAR REGRESSION MODELS BASED ON TOTAL DISSIPATED ENERCY

Independent Dependent Test Linear

Variable Variable Condition Coefficient Intercept R2
Ip Oy C55 37.31 ~-62.58 .54
It Oy €520 22.11 120.71 47
IT Oy Cc35 30.70 433.61 .36
Iy Iy c320 31.54 699.45 .48
IT 9 C55 16.57 31.08 .88
Ip IR €520 21.61 -25.63 .93
Ip % Cc35 17.24 -59.46 .72
Ip IR Cc320 18.20 -151.22 .64
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plotting the maximum stress as a function of the other primary mechanical
properties (i.e., 2 Op? ET, and IT) in Figures lf8.b_Figures 1l and 2 are of
interest since they contain the loci of points for the peak value of the
stress-strain curve and illustrate the large variation in the mechanical
response within a particular test condition and between test conditions.
Linear regression lines were calculated for each property pair at each test
condition in Figures 1-8. The property pair which showed the strongest

2

value) is oy vs Ip. The regression lines

are drawn for this pair in Figures 7 and 8 and the regression parameters are

correlation (i.e., the highest R

listed in Table 19. Regression models for the other property pairs had
significantly lower R% values and for this reason they are not drawn or
tabulated here.

Plots and linear regression models were also produced for all
pairwise combinations of the remaining primary mechanical properties. The

only property pair which showed a correlation is o, vs IT' Plots for this

R
pair together with the regression line for each test condition are shown in

Figures 9 and 10. The regression parameters‘for this pair at each test
condition are listed in Table 19. '

The positive correlations for Iy and 9 with Iy are not surprising

when one considers the general shape of the stress-strain curve for multi-year
ridge ice. The interesting observation is the similarity in slopes (except

possibly for Oy VS IT at C520) at each test condition for the two models.

This suggests that the variations of o, with Ip and o with Ip are independent

M
of temperature and strain rate. The temperature and strain rate effects on

the GM vs IT and GR

regression lines in the plane.

vs Ip models are accounted for by translations of the

LINEAR REGRESSION MODELS BASED ON
ENERGY DISSIPATED AT PEAK STRENGTH

Our ability to calculate ice loads would be greatly improved if a
failure criteria could be formulated to predict the maximum stress. Failure
or yield criteria are often formulated by appealing.to energy considerations.
We have already seen some correlation between the maximum stress (UM) and the
total dissipated energy (IT) in Figures 7 and 8. However, I; depends on the
post peak behavior of the stress-strain curve and, consequehtly, would not be

useful in the prediction of o,. Instead, an energy-based failure criterion

M
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